
Greenplum Database:
Evolving Advanced Analytics on PostgreSQL

How to make a Greenplum?

PRIMARIES

MIRRORS

Master Standby Master

PostgreSQL Integration Strategy

GOALS
● Reduce Long Term Cost Structure

● World Wide Technical Collaboration

● Reduce Bespoke Technologies

● Avoid Proprietary Pockets

INITIATIVES
● 8.3 in September, 2017

● Based on 9.2 Today

● Goal of 9.4 for next milestone

● Reach PG 11 and stay in sync

● Innovate on Greenplum Database

MPP, Keep PG intact

But what would I use it for?

Relational data

Geospatial

You have data and you want to ask it
questions...

Text searching

UDF’s via Python, R or anything you can run in a
container!

Graph

Relational data

Geospatial

You have data and you want to ask it
questions...

Text searching

UDF’s via Python, R or anything you can run in a
container!

Graph

… but you have LOTS of data. 10 Terabytes+

For

example an

internet

company

… or you need to to do anomaly detection

Government Agency: Tax Fraud Detection

A lot of tax return data

submitted in a short

period of time!

National Institute of

Information and

Communications Technology

(NICT) (of Japan)

● predict and react to

extreme weather events

… or you have very complex questions to
answer!

How does it really work?

Parallel Query Execution
Extending Postgresql Execution Engine for MPP Operations

Planner creates query execution

plan that is MPP aware

Plans are executed in parallel

across segment instances

Motion operators for inter-segment

communication

Gather Motion 4:1(Slice 3)

Sort

HashAggregate

HashJoin

Redistribute Motion 4:4(Slice 1)

HashJoin

Hash Hash

HashJoin

Hash

Broadcast Motion 4:4(Slice 2)

Seq Scan on motion

Seq Scan on customerSeq Scan on

line item

Seq Scan on

orders

Master Host

Master Segment

Catalog

Query Optimizer

Distributed TM

DispatchQuery Executor

Parser enforces

syntax, semantics

and produces a

parse tree

Client
Accepts client connections,

incoming user requests and

performs authentication

Parser

Master Host

Query Optimizer

Local Storage

Master Segment

CatalogDistributed TM

Interconnect

DispatcherQuery Executor

Parser Query Optimizer
Consumes the

parse tree and

produces the query

plan

Query execution

plan contains how

the query is

executed

Master Host

Segment Instance

Local TM

Query Executor

Catalog

Local Storage

Segment Host

Segment Instance

Local TM

Query Executor

Catalog

Local Storage

Segment Instance

Local TM

Query Executor

Catalog

Local Storage

Segment Instance

Local TM

Query Executor

Catalog

Local Storage

Segment Host

Segment Instance

Local TM

Query Executor

Catalog

Local Storage

Segment Instance

Local TM

Query Executor

Catalog

Local Storage

Segment Instance

Local TM

Query Executor

Catalog

Local Storage

Segment Host

Segment Instance

Local TM

Query Executor

Catalog

Local Storage

Segment Instance

Local TM

Query Executor

Catalog

Local Storage

Query Dispatcher

Local Storage

Master Segment

CatalogDistributed TM

Interconnect

Query Optimizer

Query Executor

Parser

Dispatcher

Responsible for

communicating the

query plan to

segments

Allocates cluster

resources required to

perform the job and

accumulating/presenti

ng final results

Master Host

Segment Instance

Local TM

Query Executor

Catalog

Local Storage

Segment Host

Segment Instance

Local TM

Query Executor

Catalog

Local Storage

Segment Instance

Local TM

Query Executor

Catalog

Local Storage

Segment Instance

Local TM

Query Executor

Catalog

Local Storage

Segment Host

Segment Instance

Local TM

Query Executor

Catalog

Local Storage

Segment Instance

Local TM

Query Executor

Catalog

Local Storage

Segment Instance

Local TM

Query Executor

Catalog

Local Storage

Segment Host

Segment Instance

Local TM

Query Executor

Catalog

Local Storage

Segment Instance

Local TM

Query Executor

Catalog

Local Storage

Query Executor

Local Storage

Master Segment

CatalogDistributed TM

Interconnect

Query Optimizer

Query Dispatcher

Parser

Query Executor

Responsible for

executing the steps

in the plan

(e.g. open file,

iterate over tuples)

Communicates its

intermediate results

to other executor

processes

Segment Instance

Local TM

Query Executor

Catalog

Local Storage

Segment Host

Segment Instance

Local TM

Query Executor

Catalog

Local Storage

Segment Instance

Local TM

Query Executor

Catalog

Local Storage

Segment Instance

Local TM

Query Executor

Catalog

Local Storage

Segment Host

Segment Instance

Local TM

Query Executor

Catalog

Local Storage

Segment Instance

Local TM

Query Executor

Catalog

Local Storage

Segment Instance

Local TM

Query Executor

Catalog

Local Storage

Segment Host

Segment Instance

Local TM

Query Executor

Catalog

Local Storage

Segment Instance

Local TM

Query Executor

Catalog

Local Storage

Master Host

Distributed Transaction Management

Local Storage

Master Segment

Query Executor

Catalog

Interconnect

Query Optimizer

Query Dispatcher

Parser

Distributed TM

Segments have their

own commit and replay

logs and decide when

to commit, abort for

their own transactions

DTM resides on the

master and

coordinates the

commit and abort

actions of segments

Segment Instance

Local TM

Query Executor

Catalog

Local Storage

Segment Host

Segment Instance

Local TM

Query Executor

Catalog

Local Storage

Segment Instance

Local TM

Query Executor

Catalog

Local Storage

Segment Instance

Local TM

Query Executor

Catalog

Local Storage

Segment Host

Segment Instance

Local TM

Query Executor

Catalog

Local Storage

Segment Instance

Local TM

Query Executor

Catalog

Local Storage

Segment Instance

Local TM

Query Executor

Catalog

Local Storage

Segment Host

Segment Instance

Local TM

Query Executor

Catalog

Local Storage

Segment Instance

Local TM

Query Executor

Catalog

Local Storage

Master Host

Segment Mirroring
Performant Redundancy

2 copies of each segment

Automatic mirroring

High bandwidth one-to-one data transfer
based on file updates (keep up with ingestion)

Automatic failover when hardware fails

Interconnect

Segment Host
Segment Instance

Segment Instance

Segment Instance

Segment Instance

Master View Segment View

• Data is divided among all hosts

• Can be processed in parallel by queries

43 Oct 20 2005 12
64 Oct 20 2005 111
45 Oct 20 2005 42
46 Oct 20 2005 64
77 Oct 20 2005 32
48 Oct 20 2005 12

Order

O
rd

e
r

#

O
rd

e
r

D
a
te

C
u

s
to

m
e
r

ID

50 Oct 20 2005 34
56 Oct 20 2005 213
63 Oct 20 2005 15
44 Oct 20 2005 102
53 Oct 20 2005 82
55 Oct 20 2005 55

Data Distribution
The Key to Parallelism

Example:

SELECT SUM(order_amount) from order;

Physical separation of data to enable faster processing with WHERE

predicates

Unrequired partitions are not processed

Benefits large fact tables more than small dimension tables

Vertical Partitioning
Dividing Data By Access Patterns

TABLE ‘SALES’

Jan15 Feb15 Mar15 Apr15 May15 Jun15 Jul15 Aug15 Sep15

• Columnar storage compresses better

• Optimized for retrieving a subset of

the columns when querying

• Compression can be set differently

per column: gzip (1-9), quicklz, delta,

RLE

 Row oriented faster when returning

all columns

 HEAP for many updates and deletes

 Use indexes for drill through queries

TABLE ‘SALES’

Jun

Column-orientedRow-oriented

Oct Year -

1

Year -

2

External HDFS or S3

 Less accessed partitions

on external partitions to

seamlessly query all data

 Text, CSV, Binary, Avro,

Parquet format

 All major HDP Distros

 S3 Compatible Storage

Platforms

Nov DecJul Aug Sep

Polymorphic Storage
Logical table with partitioned physical storage

Segment 1A Segment 1B Segment 1C Segment 1D

Segment 2A Segment 2B Segment 2C Segment 2D

Segment 3A Segment 3B Segment 3C Segment 3D

Segment 1A Segment 1B Segment 1C Segment 1D

Segment 2A Segment 2B Segment 2C Segment 2D

Segment 3A Segment 3B Segment 3C Segment 3D

Segment 1A Segment 1B Segment 1C Segment 1D

Segment 2A Segment 2B Segment 2C Segment 2D

Segment 3A Segment 3B Segment 3C Segment 3D

SELECT COUNT(*)

FROM orders

WHERE order_date >= ‘Oct 20 2007’

AND order_date < ‘Oct 27 2007’

&

Evenly distribute orders data across all segments Only scans the relevant order partitions

Segment 1A Segment 1B Segment 1C Segment 1D

Segment 2A Segment 2B Segment 2C Segment 2D

Segment 3A Segment 3B Segment 3C Segment 3D

Distribution & Partitions
Vertical slices of large fact tables

Indices
Finding specific items

Most analytical environments operate on large

volumes of data

Sequential scan is the preferred method to read

the data

For queries with high selectivity, indexes may

improve performance

Drill through queries

Lookup queries

Greenplum Supports Indices:

• Btree

• GIST

• Bitmap

• GIN index (roadmap)

• BRIN index (roadmap)

1 item in

millions or

billions

GPORCA Optimizer
Query Accelerator

Common Table

Expression and

Recursive Queries

02

Efficiently Processing

Complex Correlated

Queries

01

Dynamic Partition

Elimination

03

Dynamic Partition
Elimination

Common Table
Expression Push Downs

Efficiently Processing
Complex Correlated

Queries

8 Years Investment of Doctoral Science for SQL on Big Data

Based on Cascades / Volcano Framework, Goetz Graefe

Handles extremely complex optimizations on big data and MPP clusters

Complex Correlated Queries

SELECT * FROM part p1

WHERE p1.p_size > 40 OR p1.p_retailprice >

(SELECT avg(p2.p_retailprice)

FROM part p2 WHERE p2.p_brand = p1.p_brand)

GPORCA Decorelates when possible

Avoid Nested Loop

Convert to JOINs

Complex Correlated Queries

GPORCA 100x faster

than PG Based Planner

on analytical queries on

large datasets

Pushing Predicates Below CTEs

JOIN

CTE

CONSUMER(v)

CTE

CONSUMER(v)

SEQUENCE

SELECT (a=10)

JOIN

CTE

CONSUMER(v)

SELECT (a=20)

SELECT (a=30)

CTE Producer(v)

GROUP BY

WITH v AS (SELECT a, sum(b) as s FROM T
GROUP BY a)
SELECT *
FROM v as v1, v as v2, v as v3
WHERE v1.a < v2.a
AND v1.s < v3.s
AND v1.a = 10
AND v2.a = 20
AND v3.a = 30;

TABLE SCAN(T)SELECT

(a=10 OR a=20 OR a=30)

TABLE SCAN(T)

Pushing Predicates Below CTEs

On average

plans generated by

GPORCA 7x faster

than PG Based Planner

Dynamic Partition Elimination

bootcamp=# explain SELECT year FROM catalog_sales JOIN date_dim ON (date_id=date_dim.id) GROUP BY year;

QUERY PLAN

--

Gather Motion 2:1 (slice3; segments: 2) (cost=0.00..863.06 rows=1 width=4)

-> GroupAggregate (cost=0.00..863.06 rows=1 width=4)

Group By: date_dim.year

-> Sort (cost=0.00..863.06 rows=1 width=4)

Sort Key: date_dim.year

-> Redistribute Motion 2:2 (slice2; segments: 2) (cost=0.00..863.06 rows=1 width=4)

Hash Key: date_dim.year

-> HashAggregate (cost=0.00..863.06 rows=1 width=4)

Group By: date_dim.year

-> Hash Join (cost=0.00..863.05 rows=60 width=4)

Hash Cond: catalog_sales.date_id = date_dim.id

-> Dynamic Table Scan on catalog_sales (dynamic scan id: 1) (cost=0.00.. rows=5000 width=4)

-> Hash (cost=100.00..100.00 rows=50 width=4)

-> Partition Selector for catalog_sales(dynamic scan id: 1)(cost=10... rows=50 width=4)

Filter: catalog_sales.id = date_dim.id

-> Broadcast Motion 2:2 (slice1; segments: 2) (cost=0.00..431.00 rows=12 width=8)

-> Table Scan on date_dim (cost=0.00..431.00 rows=6 width=8)

Settings: optimizer=on

Optimizer status: PQO version 2.40.0

(19 rows)

SQL Containerization: Greenplum Resource Groups

GOALS
● Provides resource isolation for query multi-tenancy and mixed workloads

● Enhances stability and manageability of Greenplum

CAPABILITIES
● Specify CPU Max Per Group

● Burst Above Max Limit if available

● Specify Max Memory Per Group And Memory Per Query

● Specify Max Concurrency Per Group

● Leverages Linux Cgroups for implementation

● Able to pin workload to CPU cores

● Transaction scope not Statement scope

Containerized Compute Environments

Key Features

● Foundational work for containerized Python and R compute

environments

● Brings trusted execution of Python and R inside Greenplum, as well as

Anaconda Python and Python 2.7

● Uses Docker Containers for sandboxing the execution environment for

user functions, preventing the user from harming the host system and

accessing the things end user should not access

+

+

New Greenplum Backup & Restore Utility

● Released GA in February 2018

● Improved Locking Profile

● Same Locks as Read-Only User

● Enhanced monitoring and reporting

● Plugins Architecture

● MPP pg_dump

PXF: Accelerated Hadoop Access

Unlock external data source with power of Greenplum Query

Apache
Tomcat

PXF Webapp
REST API Java API

HTTP, port: 51200

Java API

Java API

Pivotal Greenplum
PXF Service

● Text

● CSV

● JSON

● Parquet

● Avro

● ORC

Apache Madlib Advanced Analytics Library
Key Features

● Open-source library for scalable in-database analytics; provides data-

parallel implementations of mathematical, statistical and machine

learning methods for structured and unstructured data

● Apache Top Level Project from July 2017

Natural Phenomena Have Graph
Data Structure

Example: Social Network,
Computer Network, Industrial
Components, etc.

Familiar SQL interface

Algorithms:
• All Pairs Shortest Path (APSP)
• Breadth-First Search
• Average Path Length
• Closeness Centrality
• Graph Diameter
• In-Out Degree
• PageRank
• Single Source Shortest Path (SSSP)
• Weakly Connected Components

Graph Analytics

PostGIS @ Scale

Key Features

● Supports for Spatial objects/types/functions such as Points, Lines, Polygons,

Perimeter, Area, Intersection, Contains, Distance, Longitude/Latitude

● Raster support

● Round Earth calculations

● Spatial Indexes & Bounding Boxes

● For example, the query for all ship traffic of the coast of North Carolina looked like this: SELECT *

FROM <table> WHERE <geom> && ST_MakeEnvelope(-78, 33, -75, 36, 4326);

Pivotal Greenplum v6 (targeted March 2019)

● Merge PostgreSQL 9.3 or 9.4 into GPDB

● Column Level Permissions, Recursive CTE, GIN Index Support, Unlogged Tables, Range

Types, higher speed short queries, more

● Safe In Place Major Upgrades

● Write Ahead Logging (WAL) for internal cluster mirroring

● Online Expand with Jump Consistent Hash

● Replicated Tables

● Distributed Deadlock Detection

Runs In All Platforms

• Infrastructure Agnostic: A portable, 100% software solution
• Same platform, no switching/migration cost

Greenplum Database Vision

PostgreSQL as industry standard OSS RDBMS core engine

Elastic Flexible MPP Deployments

Mixed Workload, High Concurrency, Mission Critical Use Cases

Open Source EcoSystem Integration, Avoid Data Silos

Cloud OS
Servers
Storage

Kafka
Streaming Data
Ingestion & Analytics

Data Analytics Architecture of Future

In-Memory Cache Layer
No-SQL analytics

SQL analytics

Open SourceProprietary

Symmetric

Multiprocessing
(Shared Everything)

Massively Parallel

Processing
(Shared Nothing)

Netezza

Exadata

Vertica

SQL Server

Big SQL Competition

How about case studies?

Wall Street Risk Calculations: Crush Your Deadline

• Millions and Billions of Risk Calculations Can be Stored and Queried

• Daily reports can be generated in under an hour

• Global Stress Tests can be run daily not weekly

• Run New AdHoc Reports Based on Spontaneous Ideas

• Chief Risk Officer: “Without Greenplum We Could Not Have Achieved These

Results”

A modern MPP architecture enables rapid development and processes information on-demand.

Anomalous Data Movement Use Case

• Firm needs to consolidate activity from system access logs of all types

• Firm needs to audit internal system usage

• Ability to correlate and join data sources not just act on events

• Determine the difference between normal and abnormal behavior

• Learn over time based on incidents and false positive training

• Detect internal abuse of systems or access

• Detect Advanced Persistent Threats

Protect the integrity of internal operations

Predictive Maintenance Analytics

Goal

• Failing equipment causes issues with operations

• Unable to store & process fire-hose of data

• Start maintenance before equipment will fail

• Avoid costly un-required activity

Solution

• High velocity data ingestion

• Store PBs of data

• Machine learning and SQL analytics

• Very low latency and high speed data access

Time

E
q
u

ip
m

e
n

t
C

o
n

d
it
io

n

Broken

Cost to repair

Failure starts to

occur
Early signal 1

Early signal 2

Early signal 3

Audible noise

What we want to avoid

…and other use cases…
DEMAND FORECASTING IOT REPORTING

CHURN REDUCTIONYIELD ANALYTICS

How can I get involved?

Greenplum Community Update

• Github is cool!

https://github.com/greenplum-db/gpdb

• 392 Project Watchers

• 2549 Project Stars

• 782 Project Forks

• 170 Contributors

• 4433 PRs (51 open)

• 605 issues (160 open)

Greenplum Mailing Lists

• 357 gpdb-users@greenplum.org subscribers

• 287 gpdb-dev@greenplum.org subscribers

Greenplum Slack Channel

• 183 https://greenplumslack.herokuapp.com/ members

Greenplum YouTube Channel
• 762 https://www.youtube.com/greenplumdatabase

subscribers

• 101 Videos

Open Source BootStrap from Zero Oct 2015

https://github.com/greenplum-db/gpdb
mailto:gpdb-users@greenplum.org
mailto:gpdb-dev@greenplum.org
https://greenplumslack.herokuapp.com/
https://www.youtube.com/greenplumdatabase

PGConf Brasil 2018
Greenplum Database: Evolving Advanced Analytics on PostgreSQL

